Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Many news outlets have reported an increase – or surge – in attention-deficit/hyperactivity disorder, or ADHD, diagnoses in both children and adults. At the same time, health care providers, teachers and school systems have reported an uptick in requests for ADHD assessments.
These reports have led some experts and parents to wonder whether ADHD is being overdiagnosed and overtreated.
As researchers who have spent our careers studying neurodevelopmental disorders like ADHD, we are concerned that fears about widespread overdiagnosis are misplaced, perhaps based on a fundamental misunderstanding of the condition.
Discussions about overdiagnosis of ADHD imply that you either have it or you don’t.
However, when epidemiologists ask people in the general population about their symptoms of ADHD, some have a few symptoms, some have a moderate level, and a few have lots of symptoms. But there is no clear dividing line between those who are diagnosed with ADHD and those who are not, since ADHD – much like blood pressure – occurs on a spectrum.
Treating mild ADHD is similar to treating mild high blood pressure – it depends on the situation. Care can be helpful when a doctor considers the details of a person’s daily life and how much the symptoms are affecting them.
Not only can ADHD symptoms be very different from person to person, but research shows that ADHD symptoms can change within an individual. For example, symptoms become more severe when the challenges of life increase.
ADHD symptoms fluctuate depending on many factors, including whether the person is at school or home, whether they have had enough sleep, if they are under a great deal of stress or if they are taking medications or other substances. Someone who has mild ADHD may not experience many symptoms while they are on vacation and well rested, for example, but they may have impairing symptoms if they have a demanding job or school schedule and have not gotten enough sleep. These people may need treatment for ADHD in certain situations but may do just fine without treatment in other situations.
This is similar to what is seen in conditions like high blood pressure, which can change from day to day or from month to month, depending on a person’s diet, stress level and many other factors.
ADHD symptoms start in early childhood and typically are at their worst in mid-to late childhood. Thus, the average age of diagnosis is between 9 and 12 years old. This age is also the time when children are transitioning from elementary school to middle school and may also be experiencing changes in their environment that make their symptoms worse.
Classes can be more challenging beginning around fifth grade than in earlier grades. In addition, the transition to middle school typically means that children move from having all their subjects taught by one teacher in a single classroom to having to change classrooms with a different teacher for each class. These changes can exacerbate symptoms that were previously well-controlled. Symptoms can also wax and wane throughout life.
Psychiatric problems that often co-occur with ADHD, such as anxiety or depression, can worsen ADHD symptoms that are already present. These conditions can also mimic ADHD symptoms, making it difficult to know which to treat. High levels of stress leading to poorer sleep, and increased demands at work or school, can also exacerbate or cause ADHD-like symptoms.
Finally, the use of some substances, such as marijuana or sedatives, can worsen, or even cause, ADHD symptoms. In addition to making symptoms worse in someone who already has an ADHD diagnosis, these factors can also push someone who has mild symptoms into full-blown ADHD, at least for a short time.
The reverse is also true: Symptoms of ADHD can be minimized or reversed in people who do not meet full diagnostic criteria once the external cause is removed.
Clinicians diagnose ADHD based on symptoms of inattention, hyperactivity and impulsivity. To make an ADHD diagnosis in children, six or more symptoms in at least one of these three categories must be present. For adults, five or more symptoms are required, but they must begin in childhood. For all ages, the symptoms must cause serious problems in at least two areas of life, such as home, school or work.
Current estimates show that the strict prevalence of ADHD is about 5% in children. In young adults, the figure drops to 3%, and it is less than 1% after age 60. Researchers use the term “strict prevalence” to mean the percentage of people who meet all of the criteria for ADHD based on epidemiological studies. It is an important number because it provides clinicians and scientists with an estimate on how many people are expected to have ADHD in a given group of people.
In contrast, the “diagnosed prevalence” is the percentage of people who have been diagnosed with ADHD based on real-world assessments by health care professionals. The diagnosed prevalence in the U.S. and Canada ranges from 7.5% to 11.1% in children under age 18. These rates are quite a bit higher than the strict prevalence of 5%.
Some researchers claim that the difference between the diagnosed prevalence and the strict prevalence means that ADHD is overdiagnosed.
We disagree. In clinical practice, the diagnostic rules allow a patient to be diagnosed with ADHD if they have most of the symptoms that cause distress, impairment or both, even when they don’t meet the full criteria. And much evidence shows that increases in the diagnostic prevalence can be attributed to diagnosing milder cases that may have been missed previously. The validity of these mild diagnoses is well-documented.
Consider children who have five inattentive symptoms and five hyperactive-impulsive symptoms. These children would not meet strict diagnostic criteria for ADHD even though they clearly have a lot of ADHD symptoms. But in clinical practice, these children would be diagnosed with ADHD if they had marked distress, disability or both because of their symptoms – in other words, if the symptoms were interfering substantially with their everyday lives.
So it makes sense that the diagnosed prevalence of ADHD is substantially higher than the strict prevalence.
People who are concerned about overdiagnosis commonly worry that people are taking medications they don’t need or that they are diverting resources away from those who need it more. Other concerns are that people may experience side effects from the medications, or that they may be stigmatized by a diagnosis.
Those concerns are important. However, there is strong evidence that underdiagnosis and undertreatment of ADHD lead to serious negative outcomes in school, work, mental health and quality of life.
In other words, the risks of not treating ADHD are well-established. In contrast, the potential harms of overdiagnosis remain largely unproven.
It is important to consider how to manage the growing number of milder cases, however. Research suggests that children and adults with less severe ADHD symptoms may benefit less from medication than those with more severe symptoms.
This raises an important question: How much benefit is enough to justify treatment? These are decisions best made in conversations between clinicians, patients and caregivers.
Because ADHD symptoms can shift with age, stress, environment and other life circumstances, treatment needs to be flexible. For some, simple adjustments like classroom seating changes, better sleep or reduced stress may be enough. For others, medication, behavior therapy, or a combination of these interventions may be necessary. The key is a personalized approach that adapts as patients’ needs evolve over time.
ADHD patients were found to be seven times more likely than controls to have first-degree relatives with ADHD.
Taiwan's National Health Insurance program is a single-payer system that covers 99.6% of the island's 23 million residents. It includes family relationships.
This enabled a Taiwanese study team to examine the comorbidity of psychiatric disorders among close relatives in the entire population over eleven years, beginning at the start of 2001 and concluding at the end of2011.
For greater certainty of diagnosis, only persons twice diagnosed with the same psychiatric disorder were included as index individuals. There were 431,887 index patients, 152,443 of whom were ADHD index patients.
These index patients were then compared with all of their first-degree relatives (FDRs): parents, children, siblings, and twins. This produced 1,017,430 patient-FDR pairs, of which 401,301 were ADHD patient-FDR pairs.
Next, four controls were matched by age, gender, and type relative to each case, resulting in 4,069,720 control pairs.
After adjusting for age, gender, urbanization, and income level, ADHD patients were seven times more likely than controls to have first-degree relatives with ADHD. They were also seven times more likely to have FDRs with major depressive disorder, four times more likely to have FDRs with autism spectrum disorder, twice as likely to have FDRs with bipolar disorder, and 80%more likely to have FDRs with schizophrenia.
Oxytocin is a hormone released by the pituitary gland that stimulates the contraction of the uterus during labor. Synthetic oxytocin is widely administered during labor to supplement a birthing parent's supply and facilitate childbirth.
Previous studies have found an association between synthetic oxytocin and increased odds of ADHD in offspring.
A joint Danish and Finnish team used their countries' national registers to obtain countrywide cohorts encompassing over 577,000 Danes and over 945,000 Finns. Oxytocin had been administered in 31% of the Danish deliveries and 46% of the Finnish ones. Any children either diagnosed with ADHD or who received prescriptions for ADHD drugs were categorized as having ADHD.
As in previous studies, unadjusted results found a significant association with ADHD. Combining the two populations, children whose mothers had received oxytocin during labor were 16% more likely to later develop ADHD.
After adjusting for a series of confounders such as birth year, maternal age, education, marital status, parity, smoking in pregnancy, labor induction, gestational age, and intrauterine growth, the association dropped markedly, to an increased likelihood of barely 3%.
Looking at Denmark alone, the unadjusted risk was 9% greater, vanishing altogether after adjusting for confounders. In Finland, the unadjusted risk was 20% greater, declining to 4% after adjusting for confounders.
The authors noted that "Exposure to obstetric oxytocin is not a random process, and it is likely that other factors than the ones included here vary systematically between women treated vs not treated with oxytocin. ... Therefore, we find it most likely that the minor elevations in risk are due to uncontrolled and residual confounding, and thereby our results underscore the lack of a causal association between obstetric oxytocin exposure and ADHD."

Twenty studies covering a total of 107,282 participants reported the prevalence of persistent adult ADHD and found that the total pooled prevalence was 4.6%.
An international team of researchers conducted a comprehensive search of the peer-reviewed literature to perform a meta-analysis, with three aims:
1) assess the global prevalence of adult ADHD
2) explore possible associated factors
3) estimate the 2020 global population of persons with adult ADHD.
In doing so, they distinguished between studies requiring childhood-onset of ADHD to validate adult ADHD (persistent adult ADHD) and studies that make no such requirement and examine ADHD symptoms in adults regardless of previous childhood diagnosis (symptomatic adult ADHD).
The search yielded forty articles covering thirty countries. Twenty reported prevalence data on symptomatic adult ADHD, 19 on persistent adult ADHD, and one on both. Thirty-five studies were published in the last decade (2010-2019). Thirty-one included both urban and rural populations. Thirty-five had a quality score of six or above (out of ten). Twenty-five had sample sizes greater than a thousand.
Because the prevalence of ADHD is age-dependent, and different countries vary widely in the age structure of their populations, the authors adjusted country results for their structures. This allowed for meaningful global estimates of the prevalence of adult ADHD.
Twenty studies covering a total of 107,282 participants reported the prevalence of persistent adult ADHD. The pooled prevalence was 4.6%. After adjustment for the global population structure, the pooled prevalence was 2.6%, equivalent to roughly 140 million cases globally.
Twenty-one studies covering 50,098 participants reported on the prevalence of symptomatic adult ADHD. The pooled prevalence was 8.8%. After adjustment for the global population structure, the pooled prevalence was 6.7%, equivalent to roughly 366 million cases globally.
For persistent adult ADHD, adjusted prevalence declined steeply from 5% among 18- to 24-year-olds to 0.8% among those 60 and older.
For symptomatic adult ADHD, adjusted prevalence declined less steeply from 9% among 18- to 24-year-olds to 4.5% among that 60 and older.
In each case, subgroup analyses found no significant differences based on sex, urban or rural setting, diagnostic tool, DSM version, or investigation period, although pooled prevalence estimates of persistent adult ADHD from 2010 onward were almost twice the previous pooled prevalence estimates. For symptomatic adult ADHD, however, differences between WHO (World Health Organization) regions were highly significant, although the outliers(Southeast Asia at 25% and Eastern Mediterranean at 16%) were based on small samples(304 and 748 respectively).
In both cases, between-study heterogeneity was very high (over 97%). The authors noted, "the age of interviewed participants in the included studies was not unified, ranging from young adults to the elderly. Given the fact that the prevalence of adult ADHD decreases with advancing age, as revealed in previous investigations and our meta-regression, it is not surprising to observe such a diversity in the reported prevalence, and the considerable heterogeneity across included studies could not be fully ruled out by a priori selected variables, including diagnostic tool, DSM version, sex, setting, investigation period, WHO region, and WB [World Bank] region. The effects of other potential correlates of adult ADHD, such as ethnicity, were not able to be addressed due to the lack of sufficient information."
In both cases, there was also evidence of publication bias. The authors stated, "we did not try to eliminate publication bias in our analyses, because we deemed that an observed prevalence of adult ADHD that substantially differed from previous estimates was likely to have been published."
Preschool children who were never breastfed as infants are much more likely to have a medical diagnosis of ADHD than are children who were exclusively breastfed as infants.
The American Academy of Pediatrics (AAP) recommends exclusive breastfeeding for the first six months of infancy and continuation of breastfeeding for at least a year thereafter. Yet less than a third of U.S. mothers are still breastfeeding their infants at 12 months.
Previous studies have suggested that breastfeeding is associated with a lower risk of ADHD. But sample sizes have been small, and have not sufficiently explored confounding factors.
Using the Centers for Disease Control and Prevention's 2011-2012 National Survey of Children's Health, a research team analyzed data from a representative U.S. sample of 12,793 three- to five-year-old children.
The team excluded children with autism, developmental delays, speech problems, Tourette syndrome, epilepsy or seizure disorder, hearing problems, non-correctable vision problems, bone/joint/muscle problems, brain injury/concussion, or any current behavioral/conduct problems other than ADHD.
The team also adjusted for potential confounders. Some were demographic: sex, age, race, household income, the number of adults older than 18 years of age living in the home, and the number of children younger than the age of 18 years living in the home. Other variables related to health care access and delivery: insurance type, consistency of health insurance in the past 12 months, and a composite variable reflecting having a primary care provider, getting needed referrals, and effective care coordination. Exposure to secondhand smoke and preterm births were other key variables.
In the fully adjusted results, children who had been breastfed for at least six months were 62% less likely to be diagnosed with ADHD than those who had not (p = .0483). Moreover, each month of breastfeeding duration was associated with a significant additional 8% reduction in the odds of an ADHD diagnosis (95% confidence interval from 1% to 14%).
The authors concluded, "Preschool children who were never breastfed as infants were much more likely to have a medical diagnosis of ADHD than were children who were exclusively breastfed. Moreover, there seems to be a continuum of neuroprotective benefits associated with breastfeeding duration. Although these analyses cannot establish a causal relationship, our findings add to a growing body of literature-including several longitudinal studies and a meta-analysis-that suggests breastfeeding may reduce the likelihood of a child having later problems with inattention and/or hyperactivity. Although follow-up studies are needed to further examine the relationship between infant feeding and ADHD, these findings provide evidence to support the neurodevelopmental benefits of breastfeeding."
This review of seven studies addressing ADHD and sexuality points to a need for further research on ADHD and sexuality, with larger sample sizes.
This systematic review of the literature identified seven studies addressing ADHD and sexuality.
Sexual function
A Dutch study compared 136 persons with ADHD with two large surveys of the general Dutch population. They used both a self-report questionnaire, the Questionnaire for screening Sexual Dysfunction and a non-validated questionnaire especially constructed for the study. They found that males with ADHD reported a 50 percent higher rate of frequent masturbation than males in the general population. Both males and females were less than half as likely to be satisfied with their sex life. That was almost certainly linked to the fact that ADHD participants in the sample were less likely to be in a relationship.
A second study compared 79 ADHD participants with controls. Using a validated questionnaire, the Diagnostic Interview Schedule, to assess sexual function, they found a significant positive correlation between ADHD and the items "sex drive more than the average" and "recurrent thoughts about sex' by comparison with the control group.
A third study used two validated inventories “ the Derogates Sexual Functioning Inventory and the Social Sexual Orientation Inventory“ to assess sexual function among 27 young adult males. They found their sex drive to be higher than in the control group.
Another study, also with 27 ADHD patients, compared them with two other groups, one with fiber mitosis (benign connective tissue cancers), and the other with both ADHD and fibromatosis. They used the validated Life Satisfaction Questionnaire to assess sexual function and found that those with ADHD reported lower sex life satisfaction.
On the other hand, the only large study, with over 14,000 participants, using a non-validated questionnaire to assess sexual function, found negligible associations between ADHD and the number of sexual partners, the frequency of having sex with one's partner, and the frequency of masturbation.
Sexual dysfunctions
The Dutch study mentioned above, comparing 136 ADHD outpatients with two large surveys of the general Dutch population, used a validated self-report questionnaire, the Questionnaire for screening Sexual Dysfunctions, and a non-validated questionnaire, specially designed for the study, the Questionnaire for screening Sexual Problems. It found the rate of sexual dysfunction among both males and females with ADHD to be over twice the level in the general population. Men were four times as likely to report problems with orgasm, 50 percent more likely to report premature ejaculation, and over ten times as likely to report sexual aversion. Women were over three times as likely to report sexual excitement problems, over twice as likely to report problems with orgasm, and over three times as likely to report sexual aversion. No significant differences existed between patients treated with psychostimulants and those without such treatment.
A second study, which used a validated questionnaire to compare 79 ADHD participants with controls, found significant correlations between ADHD and aversion to sex for men but none for women.
On the other hand, a third study, comparing 32 subjects with ADHD with 293 controls, found no significant difference in the prevalence of sexual dysfunctions. It used clinical interviews to assess ADHD, and a non-validated questionnaire to assess sexual dysfunctions.
A fourth study took a very different approach. It compared 38 individuals with premature ejaculation to 27 controls. It found more than ten times the rate of ADHD symptoms among those with premature ejaculation than in the control group. Significantly, it measures premature ejaculation directly, with a stopwatch.
Conclusion
The authors concluded, "This article provides the first systematic review of sexual health among subjects with ADHD and shows that the quality of sexual health among subjects with ADHD seems poor," but acknowledged "several limitations to our review. There are only a few studies for the topics we reviewed. For many studies, the sample size was small. The methodology and measurement instruments differed, which created a potential bias."
Indeed, the study with the largest sample size found negligible associations between ADHD and sexual function, contradicting studies with small sample sizes.
Only four of the studies, all with small sample sizes, examined sexual dysfunctions. Two found strong associations with ADHD, one found none, and the fourth had mixed results.
This points to a compelling need for further research on ADHD and sexuality, with larger sample sizes.
There was no association found between ADHD and ASD diagnoses and early antibiotic use when environmental and genetic family factors were taken into account.
Proper development of the gut biota is important for the health of the brain and nervous system. It has been hypothesized that disturbances of gut bacteria by antibiotics could contribute to the development of neurodevelopmental disorders, including ADHD.
In the case of ADHD, studies to date have produced conflicting results. To tease out any familial confounding reflecting shared environment and genetics, a joint Dutch-Swedish team of researchers further tested the hypothesis through 7- to 12-year-old twins in the Netherlands Twin Register (25,781 twins) and 9-year-old twins in the Swedish Twin Registry (7,946 twins).
ADHD symptoms in the Netherlands cohort were derived from mothers' answers to the short Conners' Parental Rating Scale-Revised. For the Swedish cohort, ADHD was determined through the International Classification of Diseases codes for ADHD in the cross-linked National Patient Register.
Exposure to antibiotics during the first two years of childhood was determined by parent reports for the Netherlands twin cohort, and by prescription claims for antibiotics in the Swedish twin cohort.
Covariates were explored in both twin cohorts including educational attainment of parents, gender of the infant, birth weight, delivery mode, and asthma. Breastfeeding was also explored in the Dutch cohort.
In the unmatched analysis, comparing children with ADHD with non-related children without ADHD, early-life antibiotic use was associated with a significant 8% greater odds of ADHD in the Netherlands cohort and a significant 14% greater odds of ADHD in the Swedish cohort.
However, when limiting the analysis to matched monozygotic twins, the association disappeared altogether in both the Dutch and Swedish cohorts. Pooling both cohorts resulted in the same outcome. In all three cases, the odds flipped into a mildly negative association, but with no statistical significance.
Using higher cutoff values for ADHD symptoms made no difference.
The authors concluded, "In this large co-twin study performed in two countries, early-life antibiotic use was associated with increased risk of ADHD and ASD, but the results suggest that the association disappeared when controlled for shared familial environment and genetics, indicating that this association may be susceptible to confounding. Our results indicate that there is no association between ADHD and ASD diagnoses and early antibiotic use when environmental and genetic family factors are taken into account."

Researchers from the Swedish Department of Global Public Health, the Swedish Transport Agency, and the Swedish National Road and Transport Research Institute collaborated in a nationwide population study of motor vehicle crashes among the elderly, defined as 65 and older.
They availed themselves of the country's all-encompassing national registers to identify the anonymized records of all such drivers from 2011 through 2016. That enabled them to compare crash records of those with known driving-impairing conditions with matched drivers who had no record of such conditions.
They looked only at road traffic crashes that resulted in injury to the driver or a passenger. For anyone with multiple crash records, they only looked at the first.
This was a case-control study, with two controls matched to each case wherever possible. For every case of a 65 or older driver involved in an injurious crash, the team randomly matched two individual controls by sex, birth year, municipality of residence, and other medical conditions. Place of residence was used to distinguish residents of large cities, who would tend to drive less frequently and in denser traffic, from those in small towns and rural areas. To minimize controls that never drive, only those with a driver's license and car were considered.
Of the thirteen medical conditions examined, elderly drivers with "ADHD, autism spectrum disorder, and similar conditions" had by far the highest odds of being in crashes that resulted in injury "at almost three times the rate of those without those conditions."
But note carefully the serious limitations in the data:
The current Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) requires evidence of symptom onset before age 12 to make a diagnosis of ADHD in adults.
A recently published clinical review questions the appropriateness of this criterion in older adults 50 years old and above. It sets forth several reasons:
On the other hand, the reason for the early onset criterion is to avoid any confusion with early neurodegenerative diseases such as Alzheimer's or Lewy body dementia, which have overlapping symptoms.
The authors suggest a possible fix:
It is unethical, the authors suggest, to deny care to older, presently undiagnosed adults, given the demonstrated poor outcomes associated with untreated ADHD.
Though initially offering some measurable results, further high-quality studies are needed to determine how effective tDCS may be in treating certain ADHD symptoms.
Inhibitory control is an essential cognitive control function whereby the prefrontal cortex blocks planned motor actions or interrupts motor actions already initiated by other parts of the brain. For example, someone might instinctually reach for a candy bar but then put it back upon thinking that eating it would conflict with a higher-level goal of cutting down on sugar consumption. Impairment of inhibitory control is a known characteristic of several psychiatric disorders, including ADHD.
Any generally safe treatment with the ability to at least partially reverse such impairment would therefore be useful. Researchers are currently experimenting with transcranial direct current stimulation, a non-invasive brain stimulation technique that uses a weak electrical current to stimulate specific regions of the brain.
What, then, do we know so far about its potential effectiveness for improving inhibitory control?
A team of experts at the University of Tübingen in Germany conducted a comprehensive search of the peer-reviewed medical literature to find out. They then performed a meta-analysis of 45 studies with a combined total of over 1,600 participants. All but four of the studies used sham or other active controls.
The overall meta-analysis found a significant but small improvement in response inhibition. But it also found evidence of publication bias. Adjusting for publication bias reduced the effect size in half, to a tiny but still significant improvement.
The meta-analysis relied on two behavioral tasks that require inhibitory control to measure response inhibition: the go-/no-task, and the stop-signal task. Separating these, there was no significant improvement in the go/no-go task performance. All the improvement was concentrated on the stop-signal task.
The authors noted, "A potential limitation of this meta-analysis is that we could not exhaustively model-dependent relationships between moderator variables (e.g., tDCS polarity and electrode placement)," and "Further high-quality studies are needed to investigate potential interactions between technical and functional parameters in tDCS research."

German researchers study how useful EEG markers may or may not be in the treatment of full-spectrum ADHD as compared to sub-threshold ADHD.
Noting that to date, no study investigated potential behavioral and neural markers in adults with subthreshold ADHD as compared to adults with full syndrome ADHD and healthy controls, the German team of researchers at the University of Tübingen out to do just that, recruiting volunteers through flyers and advertisements.
Their ADHD sample consisted of 113 adults between 18 and 60 years of age (mean age 38) who fulfilled the DSM-IV-TR criteria of ADHD and were either not on medication or a steady dose of medication over the prior two months.
Another 46 participants (also mean age 38), whose symptoms did not reach the DSM-IV-TR criteria, were assigned to the group with subthreshold ADHD.
The control sample was comprised of 42 healthy participants (mean age 37).
Individuals with schizophrenia, bipolar disorder, borderline personality disorder, epilepsy, or traumatic brain injury were excluded from the sample, as were those with current substance abuse or dependence.
All participants were German-speaking Caucasians. There were no significant differences in gender, age, education, or verbal/nonverbal intelligence among the three groups.
Participants first completed an online pre-screening, which was followed up with an interview to confirm the ADHD diagnosis.
ADHD impairs executive functions, "defined as the 'top-down' cognitive abilities for maintaining problem-solving skills to achieve future goals." The researchers explored three categories of executive functioning: 1) capacity for inhibition, "the ability to inhibit dominant, automatic, or prepotent responses when necessary- 2) ability to shift, enabling smooth switching between tasks or mental sets; and 3) ability to update, "updating and monitoring of working memory representations." Participants took a battery of neuropsychological tests to assess performance in each category.
Significant differences emerged between the group with ADHD and healthy controls in all measures except one: the STROOP Reading test. But there were no significant differences between participants suffering from subthreshold and full-syndrome ADHD. Nor were there any significant differences between those with subthreshold ADHD and healthy controls.
The researchers also recorded electroencephalograms(EEGs) for each participant. In healthy individuals, there is little to no association between resting-state EEG spectral power measures and executive functions. In individuals with ADHD, some studies have indicated increased theta-to-beta ratios, while others have found no significant differences. This study found no significant differences between the three groups.
The authors concluded, "The main results of the study can be summarized as follows: First, increased executive function deficits (in updating, inhibition, and shifting functions) could be observed in the full syndrome ADHD as compared to the healthy control group while, on the electrophysiological level, no differences in the theta to the beta ratio between these groups were found. Second, we observed only slightly impaired neuropsychological functions and no abnormal electrophysiological activity in the subthreshold ADHD sample. Taken together, our data suggest some practical uses of the assessment of objective cognitive markers but no additional value of examining electrophysiological characteristics in the diagnosis of subthreshold and full syndrome ADHD in adulthood."
They added, "These findings deeply question the value of including resting EEG markers into the diagnostic procedure and also have implications for standard neurofeedback protocols frequently used in the treatment of ADHD, where patients are trained to reduce their theta power while simultaneously increasing beta activity."