Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Stimulant medications have long been considered the default first-line treatment for attention-deficit/hyperactivity disorder (ADHD). Clinical guidelines, prescribing practices, and public narratives all reinforce the idea that stimulants should be tried first, with non-stimulants reserved for cases where stimulants fail or are poorly tolerated.
I recently partnered with leading ADHD researcher Jeffrey Newcorn for a Nature Mental Health commentary on the subject. We argue that this hierarchy deserves reexamination. It is important to note that our position is not anti-stimulant. Rather, we call into question whether the evidence truly supports treating non-stimulants as secondary options, and we propose that both classes should be considered equal first-line treatments.
Stimulants have earned their reputation as the go-to drug of choice for ADHD. They are among the most effective medications in psychiatry, reliably reducing core ADHD symptoms and improving daily functioning when properly titrated and monitored. However, when stimulant and non-stimulant medications are compared more closely, the gap between them appears smaller than commonly assumed.
Meta-analyses often report slightly higher average response rates for stimulants, but head-to-head trials where patients are directly randomized to one medication versus another frequently find no statistically significant differences in symptom improvement or tolerability. Network meta-analyses similarly show that while some stimulant formulations have modest advantages, these differences are small and inconsistent, particularly in adults.
When translated into clinical terms, the advantage of stimulants becomes even more modest. Based on existing data, approximately eight patients would need to be treated with a stimulant rather than a non-stimulant for one additional person to experience a meaningful benefit. This corresponds to only a 56% probability that a given patient will respond better to a stimulant than to a non-stimulant. This difference is not what we would refer to as “clinically significant.”
One reason non-stimulants may appear less effective is the way efficacy is typically reported. Most comparisons rely on standardized mean differences, a method of averages that may mask heterogeneity of treatment effects. In reality, ADHD medications do not work uniformly across patients.
For example, evidence suggests that response to some non-stimulants, such as atomoxetine, is bimodal: this means that many patients respond extremely well, while others respond poorly, with few in between. When this happens, average effect sizes can obscure the fact that a substantial subgroup benefits just as much as they would from a stimulant. In other words, non-stimulants are not necessarily less effective across the board, but that they are simply different in who they help.
In our commentary, we also highlight structural issues in ADHD research. Stimulant trials are particularly vulnerable to unblinding, as their immediate and observable physiological effects can reveal treatment assignment, potentially inflating perceived efficacy. Non-stimulants, with slower onset and subtler effects, are less prone to this bias.
Additionally, many randomized trials exclude patients with common psychiatric comorbidities such as anxiety, depression, or substance-use disorders. Using co-diagnoses as exclusion criteria for clinical trials on ADHD medications is nonviable when considering the large number of ADHD patients who also have other diagnoses. Real-world data suggest that a large proportion of individuals with ADHD would not qualify for typical trials, limiting how well results generalize to everyday clinical practice.
Standard evaluations of medication tolerability focus on side effects experienced by patients, but this narrow lens misses broader societal consequences. Stimulants are Schedule II controlled substances, which introduces logistical barriers, regulatory burdens, supply vulnerabilities, and administrative strain for both patients and clinicians.
When used as directed, stimulant medications do not increase risk of substance-use disorders (and, in fact, tend to reduce these rates); however, as ADHD awareness has spread and stimulants are more widely prescribed, non-medical use of prescription stimulants has become more widespread, particularly among adolescents and young adults. Non-stimulants do not carry these risks.
Non-stimulants are not without drawbacks themselves, however. They typically take longer to work and have higher non-response rates, making them less suitable in situations where rapid results are essential. These limitations, however, do not justify relegating them to second-line status across the board.
This is a call for abandoning a one-size-fits-all approach. Instead, future guidelines should present stimulant and non-stimulant medications as equally valid starting points, clearly outlining trade-offs related to onset, efficacy, misuse risk, and practical burden.
The evidence already supports this shift. The remaining challenge is aligning clinical practice and policy with what the data, and patient-centered care, are increasingly telling us.

In December 2016, the U.S. Food and Drug Administration (FDA) warned “that repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” The FDA adds, “Health care professionals should balance the benefits of appropriate anesthesia against the potential risks, especially for procedures lasting longer than 3 hours or if multiple procedures are required in children under 3 years,” and “Studies in pregnant and young animals have shown that using these drugs for more than 3 hours caused widespread loss of brain nerve cells.”
That raises a concern that such exposure could lead to increased risk of psychiatric disorders, including ADHD.
Noting “There are inconsistent reports regarding the association between general anesthesia and adverse neurodevelopmental and behavioral disorders in children,” a South Korean study team conducted a nationwide population study to explore possible associations through the country’s single-payer health insurance database that covers roughly 97% of all residents.
The team looked at the cohort of all children born in Korea between 2008 and 2009, and followed them until December 31, 2017. They identified 93,717 children in this cohort who during surgery received general anesthesia with endotracheal intubation (a tube inserted down the trachea), and matched them with an equal number of children who were not exposed to general anesthesia.
The team matched the unexposed group with the exposed group by age, sex, birth weight, residential area at birth, and economic status.
They then assessed both groups for subsequent diagnoses of ADHD.
In general, children exposed to general anesthesia were found to have a 40% greater risk of subsequently being diagnosed with ADHD than their unexposed peers.
This effect was found to be dose dependent by several measures:
All three measures were highly significant.
The authors concluded, “exposure to general anesthesia with ETI [endotracheal intubation] in children is associated with an increased risk of ADHD … We must recognize the possible neurodevelopmental risk resulting from general anesthesia exposure, inform patients and parents regarding this risk, and emphasize the importance of close monitoring of mental health. However, the risk from anesthesia exposure is not superior to the importance of medical procedures. Specific research is needed for the development of safer anesthetic drugs and doses.”

While ADHD is a legitimate medical condition supported by extensive scientific evidence, those diagnosed often confront various types of stigma. This stigma not only affects the person living with ADHD but also engulfs their family members, shaping their lives in ways that often go unnoticed.
ADHD (Attention Deficit Hyperactivity Disorder) is a real medical condition with lots of scientific evidence supporting it. However, people with ADHD often face stigma, which can impact them and their families in many ways. This article explores the different types of stigma related to ADHD and their effects, with insights from two important research studies.
Types of ADHD Stigma
Research on ADHD Stigma
A study in Germany looked at public attitudes toward ADHD. It found that about two-thirds of people believed ADHD symptoms exist on a spectrum, and half knew someone with similar issues. However, a quarter of the people surveyed felt annoyed by someone with ADHD. While most were okay with having an adult with ADHD as a colleague or neighbor, a quarter were against renting a room to them or giving them a job recommendation. Personal experience with ADHD was linked to more understanding and acceptance.
Another study reviewed various factors contributing to ADHD stigma. It found that uncertainty about the reliability of ADHD diagnoses, perceived dangerousness of people with ADHD, socio-demographic factors, skepticism toward ADHD medication, and whether someone disclosed their diagnosis all contributed to stigma. This stigma can negatively impact treatment adherence, effectiveness, and overall well-being of those with ADHD.
Effects of Stigma on Individuals and Families
Stigma can have serious consequences for people with ADHD and their families:
Moving Forward
Stigma creates significant barriers to treatment and quality of life for those with ADHD and their families. It's crucial to address these negative attitudes by raising awareness, sharing accurate information, and offering support. Educating healthcare providers, teachers, employers, families, and the public about ADHD can help create a more accepting environment. This way, people with ADHD and their families can live fulfilling lives without the burden of stigma.

These days, kids in America are using digital devices like smartphones, tablets, computers, and TVs more than ever. Some people worry that this might be linked to ADHD, a condition that makes it hard for kids to pay attention and control impulsive behaviors.
These days, kids in America are using digital devices like smartphones, tablets, computers, and TVs more than ever. Some people worry that this might be linked to ADHD, a condition that makes it hard for kids to pay attention and control impulsive behaviors.
Two new studies tried to find out if there's a connection between screen time and ADHD. They used data from a big survey about kids' health across the U.S. One study looked at nearly 46,000 kids aged six to 17 over two years, from 2019 to 2020. The other study analyzed data from over 101,000 kids aged zero to 17, from 2018 to 2020.
The studies figured out if a child had ADHD by asking their caregivers if a doctor or health care provider ever told them that the child had ADHD.
Findings from the First Study
The first study found that kids who used screens for two to three hours a day were 22% more likely to have ADHD. Kids who used screens for four or more hours a day were 74% more likely to have ADHD compared to kids who used screens for less than two hours a day.
However, when the researchers considered other factors like the child's age, sex, poverty status, parents' education, race, and other health problems, the link between screen time and ADHD disappeared. They did find a small link between screen time and anxiety and depression, but no link at all with ADHD.
Findings from the Second Study
The second study also considered factors that might affect the results, but they didn't look at whether the child had other behavior problems. They found that for kids five years old and under, using screens for up to three hours a day didn't make them more likely to have ADHD. But kids who used screens for four or more hours a day were twice as likely to have ADHD compared to kids who used screens for less than an hour a day.
For kids aged six to 17, those who used screens for two hours a day were 11% more likely to have ADHD. Kids who used screens for three hours a day were 16% more likely, and kids who used screens for four or more hours a day were 32% more likely to have ADHD compared to kids who used screens for less than an hour a day.
Important Points to Remember
There are two key things to keep in mind from these studies:
Conclusion
Overall, these studies didn't find strong evidence that using digital devices causes ADHD in kids and teenagers. While there might be some small connections, other factors like anxiety and depression could play a bigger role. Also, this was not a controlled experiment. It is an observational study that cannot rule out many factors. It is importaant to consider that having ADHD causes one to use digital devices more frequently.

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition that is typically diagnosed in childhood but can persist into adulthood. Its symptoms include inattention, hyperactivity, and impulsivity, and it can significantly affect daily life, academic achievement, and professional success.
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition that is typically diagnosed in childhood but can persist into adulthood. Its symptoms include inattention, hyperactivity, and impulsivity, and it can significantly affect daily life, academic achievement, and professional success. As scientific understanding of the condition continues to evolve, new research is revealing more insights into the prevalence, comorbidity, treatment, and physiological aspects of ADHD in adults. Here's a roundup of some recent findings:
A recent study assessing the prevalence of treatment for ADHD among US college students found that the location of mental health care significantly affects treatment outcomes. Specifically, students receiving mental healthcare on campus were less likely to receive any medication or therapy for ADHD, suggesting the need to evaluate the quality of mental health services available on college campuses and their effectiveness in treating ADHD.
Another study found a correlation between ADHD and the l-Arginine/Nitric oxide (Arg/NO) pathway, a physiological process linked to dopamine release and cardiovascular functioning. The study found that adults with ADHD who were not treated with methylphenidate (a common ADHD medication) showed variations in the Arg/NO pathway. This could have implications for monitoring potential cardiovascular side effects of ADHD medications, as well as for understanding the biochemical changes that occur in ADHD.
ADHD and chronic pain appear to be related, according to a comparative study of clinical and general population samples. Particularly in females with ADHD, the prevalence of chronic and multisite pain was found to be high. This calls for longitudinal studies to understand the complex sex differences of comorbid chronic pain and ADHD in adolescents and the potential impacts of stimulant use on pain.
Finally, a study investigated the comorbidity of ADHD and bipolar disorder (BD) and its potential link to violent behavior. The research revealed a positive effect of ADHD symptoms on violence tendency and aggression scores. Moreover, male gender and young age were also found to have significant positive effects on violence and aggression scores, suggesting an association between these disorders and violent behavior.

Noting that the degree comorbidity (co-occurrence) of epilepsy and ADHD “has never been quantified based on a systematic review with meta-analysis,” a Chinese study team based at Wuhan university has just reported findings based on doing just that.
Noting that the degree of comorbidity (co-occurrence) between epilepsy and ADHD “has never been quantified based on a systematic review with meta-analysis,” a Chinese study team based at Wuhan university has just reported findings based on doing just that.
Their systematic search of the peer-reviewed medical literature yielded 17 studies examining the prevalence of epilepsy among persons with ADHD, and 49 studies measuring the prevalence of ADHD among persons with epilepsy.
According to the Apple dictionary app, epilepsy is “a neurological disorder marked by sudden recurrent episodes of sensory disturbance, loss of consciousness, or convulsions, associated with abnormal electrical activity in the brain.” Its lifetime prevalence in the general population is about 0.76%, or about one in every 130 persons.
Meta-analysis of 17 studies with a combined total of over 900,000 participants spread over twelve countries on five continents yielded an epilepsy prevalence estimate of 3.4% among individuals with ADHD, or well over four times the prevalence in the general population. There was no sign of publication bias, but variability (heterogeneity) among studies was extremely high.
The worldwide prevalence of ADHD in children, on the other hand, is about 7.2%, affecting roughly one in fourteen.
Meta-analysis of 49 studies with a combined total of 172,206 persons from 16 countries on five continents reported an ADHD prevalence of just over 22% among persons with epilepsy. However, heterogeneity among studies was extremely high, and there was very strong evidence of publication bias.
Using the trim-and-fill correction for publication bias yielded a reduced estimate of 16%, which is still over twice the prevalence in the general population.
Furthermore, the authors noted, “Given that the large sample studies in this study are basically population-based studies and the small sample studies are hospital-based studies, there is also the possibility of Berkson’s bias. Specifically, patients with comorbidities are more likely to need help or seek medical advice. This possibility would yield a higher comorbidity rate in hospital-based studies.”
And that is exactly what emerged from subgroup analysis. The prevalence of ADHD in epilepsy among the hospital-based studies was 27.1%, over twice the 13.2% prevalence reported from the 13 population-based studies. The largest population-based study, a U.S. study with over 114,000 participants, yielded a prevalence of only 3.5%.
The authors cautioned that the very high degree of heterogeneity between studies indicates “it is inappropriate to consider the summary effect as representative of the real effect.”

A key component of ADHD is inhibition dysfunction disorder. Inhibition function involves control of one’s attention, thought, emotions, and behavior. That enables individuals to overcome strong external temptations or internal tendencies, and become more focused.
ADHD often includes a problem called disinhibition. This means that the brain struggles to control attention, thoughts, emotions, and behavior, which can lead to negative outcomes. Normally, inhibition helps people stay focused and avoid distractions, but when it fails, it's called disinhibition.
Children with ADHD who have problems with inhibition may face issues like substance abuse, self-harm, and antisocial behavior. Improving their inhibition can help them better manage themselves, do well in school, and have better relationships.
A team of researchers from China and South Korea explored whether physical activity could improve inhibition in children with ADHD. They reviewed studies and excluded those without control groups, those with poor quality assessments, and those involving other interventions like cognitive training or supplements. Their final analysis included 11 studies with 713 participants.
Key Findings on Physical Activity
Conclusion
The research concluded that physical activity can significantly improve the inhibition in children with ADHD, especially with regular, moderate-to-vigorous, open-skilled exercise done at least twice a week for an hour or more. Future studies should continue to explore this with high-quality methods to confirm these findings.

Computerized cognitive training (CCT) uses computers to try to strengthen cognitive skills and processes, reduce ADHD symptoms, and improve executive functioning. Executive functions are cognitive processes and mental skills that help individuals plan, monitor, and successfully execute their goals.
Computerized cognitive training (CCT) uses computers to try to strengthen cognitive skills and processes, reduce ADHD symptoms, and improve executive functioning. Executive functions are cognitive processes and mental skills that help individuals plan, monitor, and successfully execute their goals.
CCT programs target one or more cognitive processes such as motor inhibition, interference inhibition, sustained attention, and working memory. They ramp up task difficulty as performance improves. The goal is to harness the brain’s inherent adaptability (neuroplasticity) to boost performance.
A European study team that previously probed the efficacy of CCT through meta-analysis had been unable to provide a robust estimate of effect size due to an insufficient number of high-quality trials with probably blinded outcomes. Noting that “there have been a considerable number of new RCTs [randomized controlled trials] published, many with larger samples, well-controlled designs and blinded outcomes,” the team performed an updated systematic review and meta-analysis.
They included RCTs with participants of any age who either had a clinical diagnosis of ADHD or were above cut-off on validated ADHD rating scales. RCTs had to have been peer-reviewed and published in an academic journal, and to have reported a validated outcome measure of ADHD symptoms, neuropsychological processes, and/or academic outcomes.
Fourteen RCTs with a combined total of 631 participants had probably blinded outcomes. Meta-analysis of these studies yielded no significant effect on either overall ADHD symptoms or hyperactivity/impulsivity symptoms. There was a marginally significant reduction in inattention symptoms, but the effect size was small. Between-study variation (heterogeneity) was negligible and there was no sign of publication bias.
Regarding academic outcomes, meta-analyses revealed no gain in arithmetic ability or reading fluency. There was a small but not statistically significant improvement in reading comprehension. Heterogeneity was minimal, with no indication of publication bias.
With two related exceptions, meta-analyses of RCTs measuring executive functions likewise reported no significant improvements in attention, interference inhibition (initial stage in controlling impulsive behavior), motor inhibition (follow-up stage in controlling impulsive behavior), non-verbal reasoning, processing speed, and set shifting (the ability to unconsciously shift attention between one task and another).
The exceptions were for working memory tasks. Meta-analysis of 15 RCTs with a combined 753 participants reported a highly significant small-to-medium effect size improvement in verbal working memory. A separate meta-analysis of nine RCTs with a total of 441 participants similarly reported a highly significant improvement in visuospatial working memory, this time with medium effect size.
The team concluded, “There was no empirical support for the use of CCT as a stand-alone intervention for ADHD symptoms based on the largest and most comprehensive meta-analysis of RCTs conducted to date. Small effects, of likely limited clinical importance, on inattention symptoms were found – but these were limited to the setting in which the intervention was delivered. Robust evidence of small- to-moderate improvements in visual-spatial and verbal STM/WM tasks did not transfer to other domains of executive functions or academic outcomes.”

Norway has a single-payer health insurance system that covers virtually the entire population and is linked to a series of national registries tracking all sorts of data including criminal records.
Norway has a single-payer health insurance system that covers virtually the entire population and is linked to a series of national registries tracking all sorts of data including criminal records.
Using this data, a study team identified all 5,624 persons aged 10 to 18 diagnosed with ADHD between 2009 and 2011. It tracked their use of ADHD medication, and subsequent criminal charges.
Filled prescriptions were primarily for stimulant methylphenidate (90%) and the nonstimulant atomoxetine (9.5%). They tracked the cumulative number of daily defined doses (DDD) filled for any ADHD prescriptions following ADHD diagnosis.
They also compared this group with a general population sample of persons aged 10 to 18 without contact with mental health services, matched on age, sex, and geography.
They adjusted for the following confounders: age, sex, year of contact with clinic, psychiatric comorbidity at time of diagnosis, country of birth, charges before ADHD diagnosis, parents’ marital status, parent’s highest education when the child was 6 years, and parent’s labor income when the child was 6 years.
They further adjusted for municipality-level population size and high school dropout rates, and the following aggregated measures from the random sample of the general population: municipality-level labor income of parents and clinic-level percent of youth crime, youth immigrants, mothers’ marriage rate, and parents’ education level.
Comparing persons with ADHD to the matched general population over eight years follow-up, those with ADHD had considerably higher rates of criminal charges:
Next the team examined outcomes of pharmaceutical treatment.
Comparing persons with ADHD undergoing pharmacological treatment with those not receiving such treatment, those undergoing treatment had lower rates of certain criminal charges. At two years follow-up, those treated had 7.3% less violence-related charges. This corresponds to a number needed to treat (NNT) estimate of 14, indicating that on average treating 14 patients for two years avoids one violence-related criminal charge. Pharmacological treatment reduces public-order charges by at four years follow-up by 15.4% (NNT = 7), and any crime at three years follow-up by 18.5% (NNT = 5).
The authors noted, “Violence and public-order crimes are often caused by reactive-impulsive behavior which is more common in ADHD,” and concluded, “this is the first study to demonstrate causal effects of pharmacological treatment of ADHD on some types of crimes in a population-based natural experiment. Pharmacological treatment of ADHD reduced crime related to impulsive-reactive behavior in patients with ADHD on the margin of treatment, while no effects were found in crimes requiring criminal intent, conspiracy, and planning.”

Perfluoroalkylated substances (PFASs) – often described in the popular press as “forever chemicals” – are highly persistent pollutants.
Perfluoroalkylated substances (PFASs), commonly known as "forever chemicals" in the media, are pollutants that do not break down in the environment. Their chemical structure includes fluorine atoms bonded to carbon, which makes them effective at repelling water. This property has led to their use in water-repellent clothing, stain-resistant carpets and furniture, and nonstick cookware.
However, the same chemical structure that makes PFASs useful also makes them a concern for human and animal health, as there are no natural biological processes to remove them from the body. Once ingested, they accumulate and become more concentrated at each level of the food chain. PFASs can also cross the placental barrier, raising concerns about potential harm to developing embryos and fetuses.
A Chinese research team conducted a systematic review of the medical literature to examine if there is a link between maternal exposure to PFASs and an increased risk of ADHD in children. They analyzed data from several studies:
- A meta-analysis of five studies involving 2,513 mother-child pairs found no increase in ADHD risk from exposure to PFOA (perfluorooctanoate) or PFOS (perfluorooctane sulfonate). The consistency across these studies was high, with little variation and no evidence of publication bias.
- Another meta-analysis of three studies with 995 mother-child pairs also showed no increase in ADHD risk from exposure to PFNA (perfluorononanoate) or PFHxS (perfluorohexane sulfonate), with similarly negligible variation between studies and no publication bias.
- In an analysis comparing the highest and lowest quartiles of maternal exposure, a slight increase in ADHD risk was observed with PFOA exposure, while a slight decrease was noted with PFOS exposure. Both findings were marginally significant and may be due to the small sample sizes.
The researchers concluded that more studies are needed to confirm these findings due to the limited evidence available.

Guanfacine is a non-stimulant medication for ADHD. It is an Alpha-2 agonist that targets and excites receptors in the prefrontal cortex of the brain, the region that governs executive functions such as judgment, decision making, planning, and response suppression. These functions tend to be suboptimal in ADHD.
Guanfacine is a non-stimulant medication for ADHD. It is an Alpha-2 agonist that targets and excites receptors in the prefrontal cortex of the brain, the region that governs executive functions such as judgment, decision making, planning, and response suppression. These functions tend to be sub-optimal in ADHD.
Most treatment guidelines recommend stimulants as the preferred treatment for ADHD, because they respond faster, and studies show they have higher efficacy in reducing symptoms. But for individuals for whom treatment with stimulants is subpar, guidelines recommend non-stimulants as second-line treatment.
Previous meta-analyses have focused on efficacy among children and adolescents with ADHD. This meta-analysis, by a Chinese study team, expanded its reach to not only update the former, but also include studies of adults.
The team’s systematic search of the medical literature for double-blind randomized controlled trials (RCTs) identified eleven that could be combined for meta-analysis. With only a single study of efficacy for adults, however, no meta-analysis could be performed specific to persons 18 and older.
Meta-analysis of all eleven studies with a combined total of 2,623 participants found guanfacine to be roughly 75% more effective than placebo for reducing ADHD symptoms. Variation between studies (heterogeneity) was low. There was no sign of publication bias.
Breaking that down by length of time on guanfacine found no evidence of a dose-response effect, however. In fact, participants with less than ten weeks of treatment (seven RCTs, 1,771 participants) outperformed those with longer periods of treatment (four RCTs, 852 participants) with a narrow overlap in the 95% confidence limits.
The outcomes were also sensitive to the ADHD symptom scale used. Meta-analysis of RCTs using the Clinical Global Impression of Improvement treatment response score (four studies, 850 participants) reported no significant improvement, while RCTs relying on ADHD-Rating-Scale-IV (six studies, 1,128 participants) reported a significant improvement, but without providing a standardized effect size.
Finally, a meta-analysis of ten RCTs with a combined total of 2,273 persons found a 23% increase in treatment-emergent adverse events for guanfacine relative to placebo. The three most common such events in the guanfacine group were somnolence (38.6%), headache (20.5%), and fatigue (15.2%).