National Birth Cohort Finds Young Adults with ADHD Over-represented in Criminal Justice System

Using Statistics New Zealand’s Integrated Data Infrastructure (IDI), a large database of linked de-identified administrative and survey data about people and households, a local study team examined a three-year birth cohort (mid-1992 through mid-1995) totaling 149,076 persons.

The team assessed the presence of ADHD within this cohort through diagnosis codes and inference from medication dispensing, where there was at least one code relating to an ADHD diagnosis in the medication datasets. This subgroup consisted of 3,975 persons.

Next, they related this information to criminal justice system interactions of increasing severity, starting with police proceedings, and continuing with court charges, court convictions, and incarcerations. These interactions were tracked during an eight-year period from participants’ 17th birthday through their 25th birthday.

In this same period the team also tracked types of offenses: against people; against property; against organizations, government, and community; and violent offenses.

In all cases, the study team adjusted for gender, ethnicity, deprivation, and area of residence as potential confounders. 

With these adjustments, young adults with ADHD were over twice as likely as their typically developing peers to be proceeded against by police, to be charged with an offense, and to be convicted. They were almost five times as likely to be incarcerated. 

With the same adjustments, young adults with ADHD were over twice as likely as their typically developing peers to be convicted of offenses against organizations, government, and community. They were almost three times as likely to be convicted of crimes against persons, and over three and a half times more likely to be convicted of either violent offenses or offenses against property.

The authors noted, “The greater effect size for incarceration observed in our study may be due to the lack of control for comorbid conditions such as CD [conduct disorder], which are known criminogenic risk factors.” 

They also noted, “The sharp increase in the risk of incarceration observed may also signal differences in the NZ justice system’s approach to ADHD, which may be less responsive to the condition than other nations, particularly the steps in the justice system between conviction and sentence. This would suggest that the UNCRPD [United Nations Convention on the Rights of Persons with Disabilities] obligations of equal recognition before the law and the elimination of discrimination on the basis of disability are not being met for individuals with ADHD in NZ.”

They concluded, “Our findings revealed that not only were individuals with ADHD overrepresented at all stages of the CJS [criminal justice system] and offense types examined, there was also a pattern of increasing risk for CJS interactions as these individuals moved through the system. These results highlight the importance of early identification and responsivity to ADHD within the CJS and suggest that the NZ justice system may require changes to both of these areas to ensure that young individuals with ADHD receive equitable access to, and treatment within, the CJS.”

Francesca Anns, Stephanie D’Souza, Conrad MacCormick, Brigit Mirfin-Veitch, Betony Clasby, Nathan Hughes, Warren Forster, Eden Tuisaula, and Nicholas Bowden, “Risk of Criminal Justice System Interactions in Young Adults with Attention-Deficit/Hyperactivity Disorder: Findings From a National Birth Cohort,” Journal of Attention Disorders (2023), 1-11, https://doi.org/10.1177/10870547231177469.

Related posts

Nationwide population study in Denmark finds children and adolescents with ADHD more than twice as likely to suffer criminal violence

Denmark Population Study Finds Children and Adolescents with ADHD More than Likely to Suffer Criminal Violence

Children with disabilities are known to be at heightened risk of violence compared to their non-disabled peers. To what extent does this hold true for ADHD?

Denmark has a single-payer health insurance system through which health data about virtually the entire population can be cross-referenced with population, crime, welfare, and other registers through unique individual person numbers.

A Danish study team accessed national registers to examine the relationship between ADHD and criminal victimhood among nine yearly birth cohorts totaling more than 570,000 children and adolescents. 

Of these, 557,521, among them 12,040 with ADHD, were not reported as being exposed to violence, and 12,830, among which 1,179 with ADHD, were exposed to violence.

From the raw data, children and adolescents with ADHD were more than four times as likely to be exposed to violence than their typically developing peers.

The team then adjusted for other disabilities, family risk factors, gender, birth year, and ethnic background.

With these confounders out of the way, children and adolescents with ADHD remained more than twice as likely to be exposed to violence than their typically developing peers.

To place this outcome in further perspective:

  • Brain injuries increased the odds of being exposed to violence by over 75% relative to typically developing peers.
  • Physical and speech disabilities raised the odds by a bit over 35%.
  • Intellectual and sensory disabilities, dyslexia, and congenital malformations had no effect. 
  • Epilepsy reduced the odds of being exposed to violence by just under 20%, and autistic spectrum disorder by just over 25%.

Certain family risk factors further aggravated the odds:

  • Violence in the family by more than 2.5-fold.
  • Out-of-home care and breakup of parental relationship by more than 75%.

Perhaps surprisingly, substance abuse by family members had no effect whatsoever after adjusting for confounders.

January 24, 2024

Nationwide population study suggests ADHD medication may reduce child abuse

Nationwide Population Study Suggests ADHD Medication May Reduce Child Abuse

Child abuse includes any of the following inflicted on a minor under 18 years old: physical or emotional harm, sexual abuse, or neglect.

It is known to be associated with environmental factors such as poverty, parents or neighbors with a history of violence, and gender inequality.

Chronic mental disorders in minors are also associated with child abuse. To what extent, if any, might that be true of ADHD?

Taiwan has a single-payer national health insurance system that covers more than 99.6% of all residents, enabling nationwide population studies.

A local research team used data from almost two million Taiwanese in their country’s National Health Insurance Research Database (NHIRD) spanning 15 years (2000-2015) to carry out a matched-cohort study. 

All diagnoses of ADHD were made by board-certified specialists such as psychiatrists, pediatricians, neurologists, or physiatrists with a specialty in child and adolescent development.

3,540 children and adolescents between 6 and 18 years old with a diagnosis of ADHD were matched on a one-to-three basis with 10,620 peers from the NHIRD without an ADHD diagnosis.

The team adjusted for age, gender, location of residence (Northern, Central, Southern, and Eastern Taiwan), urbanization level of residence, level of hospitals as medical centers, and monthly insured premium. They further adjusted for comorbid conditions: intellectual disability, autistic disorder/pervasive developmental disorder, conduct disorder (CD)/oppositional defiant disorder (ODD), other developmental disorders, childhood emotional disorder, Tourette syndrome/tics disorders, and involuntary urination and defecation.

Overall, children and adolescents with an ADHD diagnosis were 1.8 times as likely to be abused as those without an ADHD diagnosis.

Unmedicated children and adolescents with an ADHD diagnosis were three times more likely to be abused. ADHD medication cut that risk in half.

That held true whether the medication used was methylphenidate or atomoxetine. Methylphenidate appeared to be slightly more effective than atomoxetine, and the combination of methylphenidate and atomoxetine slightly more effective yet, but these differences were not statistically significant.

The team concluded, “The results support that pharmacotherapy may attenuate the risk of child abuse in ADHD patients.”

March 5, 2024

Assessing Co-occuring Disorders in Relatives of Those With ADHD

Taiwan Population Study Assesses Comorbidity of Psychiatric Disorders among First-degree Relatives of Those with ADHD

Taiwan's National Health Insurance program is a single-payer system that covers 99.6% of the island's 23 million residents. It includes family relationships.

This enabled a Taiwanese study team to examine the comorbidity of psychiatric disorders among close relatives in the entire population over eleven years, beginning at the start of 2001 and concluding at the end of2011.

For greater certainty of diagnosis, only persons twice diagnosed with the same psychiatric disorder were included as index individuals. There were 431,887 index patients, 152,443 of whom were ADHD index patients.

These index patients were then compared with all of their first-degree relatives (FDRs): parents, children, siblings, and twins. This produced 1,017,430 patient-FDR pairs, of which 401,301 were ADHD patient-FDR pairs.

Next, four controls were matched by age, gender, and type relative to each case, resulting in 4,069,720 control pairs.

After adjusting for age, gender, urbanization, and income level, ADHD patients were seven times more likely than controls to have first-degree relatives with ADHD. They were also seven times more likely to have FDRs with major depressive disorder, four times more likely to have FDRs with autism spectrum disorder, twice as likely to have FDRs with bipolar disorder, and 80%more likely to have FDRs with schizophrenia.

February 3, 2023

Patient-Centered Outcomes Research Institute (PCORI) to Fund Landmark ADHD Medication Study

Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.

This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the  “stimulant-first” approach, which is currently used by most prescribers.

From this study, we hope to learn:

  • Is starting with a non-stimulant medication “good enough” compared with starting with a stimulant?
    In other words, when we look at overall improvement in a child’s daily life, not just ADHD symptoms, does a non-stimulant-first approach perform similarly to a stimulant-first approach?
  • Which children do better with which approach?
    Children with ADHD are very different from one another. Some have anxiety, depression, learning problems, or autism spectrum conditions. We want to know whether certain groups of children benefit more from starting with stimulants, and others from starting with non-stimulants.
  • How do the two strategies compare for side effects, treatment satisfaction, and staying on medication?
    We will compare how often children stop or switch medications because of side effects or lack of benefit, and how satisfied children, parents, and clinicians are with care under each strategy.
  • What are the longer-term outcomes over a year?
    We are interested not only in short-term symptom relief, but also in how children are doing months later in school, at home, with friends, and emotionally.

Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”

Who will be in the study?

We will enroll about 1,000 children and adolescents, ages 6 to 16, who:

  • Have ADHD and are starting or restarting medication treatment, and
  • Are being treated in everyday pediatric and mental health clinics at large children’s hospitals and health systems across the United States.

We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.

How will the treatments be assigned?

This is a randomized comparative effectiveness trial, which means:

  • Each child will be randomly assigned (like flipping a coin) to one of two strategies:


    1. Stimulant-first strategy – the clinician starts treatment with a stimulant medication.
    2. Non-stimulant-first strategy – the clinician starts treatment with a non-stimulant medication.
  • Within the assigned class, the clinician and family still choose the specific medicine and dose, and can adjust treatment as they normally would. This keeps the study as close as possible to real-world practice.
  • The randomization is 1:1, so about half the participants will start with stimulants and half with non-stimulants.

Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.

What will participants be asked to do?

Each family will be followed for 12 months. We will collect information at:

  • Baseline (before or just as medication is started)
  • Early follow-up (about weeks 3 and 6)
  • Later follow-up (about 3 months, 6 months, and 12 months)

At these times:

  • Parents will complete questionnaires about ADHD symptoms, behavior, emotions, and daily functioning at home and in the community.
  • Teachers will complete brief forms about the child’s behavior and performance at school.
  • Children and teens (when old enough) will complete age-appropriate questionnaires about their own mood, behavior, and quality of life.
  • A specially trained clinical rater, using all available information but blinded to treatment strategy, will give a global rating of how much the child has improved overall, not just in ADHD symptoms.

We will also track:

  • Medication changes (stopping, switching, or adding medicines)
  • Reasons for any changes (side effects, lack of benefit, or other reasons)
  • Any serious side effects or safety concerns

Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.

How will we analyze the results?

Using standard statistical methods, we will:

  • Compare the overall improvement of children in the stimulant-first group versus the non-stimulant-first group after 12 months.
  • Look at differences in side effects, discontinuation rates, and treatment satisfaction between the two strategies.
  • Examine which child characteristics (such as age, sex, co-occurring conditions, and baseline severity) are linked to better results with one strategy versus the other.
  • Analyze long-term outcomes, including functioning at home, school, and with peers, and emotional well-being.

All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?

Why is this study necessary now?

This study addresses a critical, timely gap in ADHD care:

  • Guidelines are ahead of the evidence.
    Existing guidelines almost always recommend stimulants as the first-line medication, yet careful reviews of the evidence show that direct comparisons of stimulant-first versus non-stimulant-first strategies are limited. We do not have strong data to say that starting with stimulants is clearly superior for all children.
  • Real-world children are more complex than those in past trials.
    Most prior medication trials have excluded children with multiple conditions, serious family stressors, or other complexities that are very common in everyday practice. Our pragmatic, multi-site design will include these children and thus produce findings that are directly relevant to front-line clinicians and families.
  • Families and clinicians are asking for alternatives.
    Parents often express worries about stimulant side effects, long-term use, and stigma. Clinicians would like clearer guidance about when a non-stimulant is a reasonable first choice. At the same time, stimulant shortages and concerns about misuse and diversion have exposed the risks of relying almost entirely on one class of medications.
  • The timing is right to influence practice and policy.
    Our team includes parents, youth advocates, frontline clinicians, and national networks that link major children’s hospitals. These partners have helped shape the study from the beginning and will help interpret and share the results. This means that if starting with non-stimulants is found to be similarly effective and safer or more acceptable for some children, practice patterns and guidelines can change rapidly.

In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.

This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY).   It will be conducted at nine sites across the USA.

January 2, 2026

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.” 

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

December 15, 2025