May 31, 2021

Assessing Undertreatment and Misuse of ADHD Medications on Four Continents

To what extent are ADHD medications insufficiently used to address properly diagnosed ADHD? To what extent are they misused by persons who are either undiagnosed or improperly diagnosed? In search of answers, an international team of researchers from Brazil, the United Kingdom, and the United States conducted a systematic review of the peer-reviewed literature and a meta-analysis of studies from four continents - South America, North America, Europe, and Australia.

The benchmarks set for proper ADHD diagnosis were any of the following:
·        Criteria established in the Diagnostic and Statistical Manual of Mental Disorders (DSM)or the International Statistical Classification of Diseases and Related Health Problems (ICD), confirmed by validated diagnostic instruments or clinical interviews.
·        Use of validated ADHD symptom scales with pre-specified thresholds.
·        Participants or caregivers affirming ADHD diagnosis by a physician.

Medications reviewed were those recommended by the majority of the international guidelines-both stimulant(methylphenidate, dexmethylphenidate, amphetamines), and non-stimulant (atomoxetine).


The team excluded studies relying on the insurance health system and third-party reimbursement datasets because the focus was on rates of ADHD medication use in the entire population rather than among individuals searching for treatment.


A meta-analysis of 18 studies with a total of 3,311 children and adolescents properly diagnosed with ADHD in seven countries on four continents (Canada, United States, Australia, Brazil, Netherlands, England, Venezuela) found an overall pharmacological treatment rate of only 19%. There was considerable variation, with the highest treatment rates in the United States (frequently over 40%) and the lowest treatment rates in Brazil, Venezuela, and Canada (under 10%). There was no sign of publication bias.


A second meta-analysis pooled 14 studies with a total of 29,559 children and adolescents without a proper diagnosis of ADHD in five countries on four continents (United States, Canada, Venezuela, Australia, Netherlands). Roughly 1% were using ADHD medications. Again, there was considerable variation, with the highest rates of medication misuse being reported in the United States and Venezuela (3-7%). Again, there was no sign of publication bias.
The authors cautioned, "it is important to note that even though the data collected constitute the most comprehensive evidence available in the literature and response/completion rates observed are acceptable, it does not constitute a world representative sample." Also, the predominance of samples from prosperous countries "most certainly inflates the treatment rates due to the exclusion of a large proportion of the world population with significant financial, cultural, and health access barriers to ADHD treatment."


They concluded, "Despite these limitations, our meta-analysis provides evidence for substantial under-treatment of children and adolescents affected by ADHD in different countries. This is a relevant public health issue worldwide since ADHD under treatment is associated with known negative outcomes in education, healthcare, and productivity systems. At the same time, we found evidence of overtreatment/misuse in individuals without a formal ADHD diagnosis. This practice might expose individuals to undesirable side effects of medications, increased risk of medication misuse, and unmeasured costs for the health care system."

RafaelMassuti, Carlos RenatoMoreira-Maia, FaustoCampani, MárcioSônego, JuliaAmaro, GláuciaChiyokoAkutagava-Martins, LucaTessari, Guilherme V.Polanczyk, SamueleCortese, Luis Augusto Rohde, “Assessing undertreatment and overtreatment/misuse of ADHD medications in children and adolescents across continents: A systematic review and meta-analysis,” Neuroscience &Biobehavioral Reviews(2021), Vol. 128, 64-73, published online ahead of print, https://doi.org/10.1016/j.neubiorev.2021.06.001.

Related posts

ADHD medication and risk of suicide

ADHD Medication and Risk of Suicide

A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.

The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.

The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.

The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.

A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."

The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."

December 13, 2021

What is Evidenced-Based Medicine?

What is Evidenced-Based Medicine?

With the growth of the Internet, we are flooded with information about attention deficit hyperactivity disorder from many sources, most of which aim to provide useful and compelling "facts" about the disorder.  But, for the cautious reader, separating fact from opinion can be difficult when writers have not spelled out how they have come to decide that the information they present is factual. 

My blog has several guidelines to reassure readers that the information they read about ADHD is up-to-date and dependable. They are as follows:

Nearly all the information presented is based on peer-reviewed publications in the scientific literature about ADHD. "Peer-reviewed" means that other scientists read the article and made suggestions for changes and approved that it was of sufficient quality for publication. I say "nearly all" because in some cases I've used books or other information published by colleagues who have a reputation for high-quality science.

When expressing certainty about putative facts, I am guided by the principles of evidence-based medicine, which recognizes that the degree to which we can be certain about the truth of scientific statements depends on several features of the scientific papers used to justify the statements, such as the number of studies available and the quality of the individual studies. For example, compare these two types of studies.  One study gives drug X to 10 ADHD patients and reported that 7 improved.  Another gave drug Y to 100 patients and a placebo to 100 other patients and used statistics to show that the rate of improvement was significantly greater in the drug-treated group. The second study is much better and much larger, so we should be more confident in its conclusions. The rules of evidence are fairly complex and can be viewed at the Oxford Center for Evidenced Based Medicine (OCEBM;http://www.cebm.net/).


The evidenced-based approach incorporates two types of information: a) the quality of the evidence and b) the magnitude of the treatment effect. The OCEBM levels of evidence quality are defined as follows (higher numbers are better:

  1. Mechanism-based reasoning.  For example, some data suggest that oxidative stress leads to ADHD, and we know that omega-3 fatty acids reduce oxidative stress. So there is a reasonable mechanism whereby omega-3 therapy might help ADHD people.
  2. Studies of one or a few people without a control group, or studies that compare treated patients to those that were not treated in the past.

Non-randomized, controlled studies.    In these studies, the treatment group is compared to a group that receives a placebo treatment, which is a fake treatment not expected to work.  

  1. Non-randomized means that the comparison might be confounded by having placed different types of patients in the treatment and control groups.
  2. A single randomized trial.  This type of study is not confounded.
  3. Systematic review and meta-analysis of randomized trials. This means that many randomized trials have been completed and someone has combined them to reach a more accurate conclusion.

It is possible to have high-quality evidence proving that a treatment works but the treatment might not work very well. So it is important to consider the magnitude of the treatment effect, also called the "effect size" by statisticians. For ADHD, it is easiest to think about ranking treatments on a ten-point scale. The stimulant medications have a quality rating of 5 and also have the strongest magnitude of effect, about 9 or 10.Omega-3 fatty acid supplementation 'works' with a quality rating of 5, but the score for the magnitude of the effect is only 2, so it doesn't work very well. We have to take into account patient or parent preferences, comorbid conditions, prior response to treatment, and other issues when choosing a treatment for a specific patient, but we can only use an evidence-based approach when deciding which treatments are well-supported as helpful for a disorder.

April 23, 2021

How Effective and Safe are Stimulant Medications for Older Adults?

How effective and safe are stimulant medications for older adults?

Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.

On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.

So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.

The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.

Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.

Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.

Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.

Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.

The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."

Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"

December 21, 2021

Large Cohort Study Reports Association Between Eye Disorders and ADHD

Refractive errors, such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism (distorted vision due to irregular curvature of the eye or lens), are common worldwide. These conditions affect 12%, 5%, and 15% of children, and rise significantly in adults to 26.5%, 31%, and 40%. Additionally, strabismus (misalignment of the eyes) and amblyopia (reduced vision in one eye from uneven image formation, often linked to strabismus) occur globally at rates of 2% and 1.4%, respectively. 

Visual impairment can affect children’s concentration in school, and studies suggest a link between eye disorders and ADHD. 

To investigate this relationship, two researchers – one based in the US and the other in Israel –carried out a nationwide retrospective cohort study using electronic medical records of all insured individuals aged 5 to 30 who were part of Maccabi Health Services, Israel’s second largest health maintenance organization, between 2010 and 2022. 

Of over 1.6 million insured members (2010–2020), inclusion/exclusion criteria and propensity score matching for age and sex were applied, along with a one-year wash-out period between the first eye diagnosis and ADHD diagnosis. In total, 221,707 cases were matched with controls without eye disorders at a 1:2 ratio, resulting in a cohort of 665,121 participants.  

Overall, those with any previous eye diagnosis were 40% more likely to have a subsequent ADHD diagnosis. This was slightly higher for females (45%) than for males (35%). It was also slightly higher for children and adolescents (42%) than for adults (37%).  

More specifically: 

  • Myopia (425,000+ participants): 30% higher ADHD rate. 
  • Hyperopia (120,000+) and astigmatism (175,000+): over 50% higher ADHD rate. 
  • Strabismus (13,000+): over 60% higher ADHD rate. 
  • Amblyopia (14,000+): 40% higher ADHD rate. 

The authors concluded that eye disorders are associated with ADHD. They noted these associations were more marked in females and children and adolescents, although, as noted above, those differences were small. They recommended that primary care providers and neurologists consider risk stratification for early screening, and that ophthalmologists refer high-risk patients for ADHD evaluation. 

 

 

February 10, 2026

South Korean Nationwide Population Study: Prenatal Exposure to Acid-suppressive Medications Not Linked to Subsequent ADHD

Acid-suppressive medications, including proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists, are often prescribed during pregnancy to treat heartburn and gastroesophageal reflux disease. 

Research shows changes in the gut microbiome can negatively affect neurodevelopment. Since acid-suppressive medications alter gut microbiota, maternal use during pregnancy may impact offspring’s neurodevelopment. Because PPIs and H2 receptor antagonists readily cross the placental barrier, they could potentially influence fetal neurodevelopment.  

The link between prenatal exposure to acid-suppressive medications and major neuropsychiatric disorders is not well understood. With the use of these medications during pregnancy rising, it is important to assess their impact on children's long-term neurodevelopment. This study examined whether maternal use of acid-suppressive drugs is associated with increased risk of neuropsychiatric disorders in children, using a large, nationwide birth cohort from South Korea. 

South Korea operates a single-payer health insurance system, providing coverage for over 97% of its citizens. The National Health Insurance Service (NHIS) maintains a comprehensive database with sociodemographic details, medical diagnoses, procedures, prescriptions, health examinations, and vital statistics for all insured individuals. 

A Korean research team analyzed data from over three million mother-child pairs (2010–2017) to assess the risks of prenatal exposure to acid-suppressing medications. They applied propensity scoring to adjust for maternal age, number of children, medical history, and outpatient visits before pregnancy, to minimize confounding factors. That narrowed the cohort to just over 800,000 pairs, with half in the exposed group. 

With these adjustments, prenatal exposure to acid-suppressing medications was associated with 14% greater likelihood of being subsequently diagnosed with ADHD. 

Yet, when 151,737 exposed births were compared to the same number of sibling controls, no association was found between prenatal exposure and subsequent ADHD, which suggests unaccounted familial and genetic factors influenced the preceding results. 

The Take-Away:

Evidence of these medications negatively affecting pregnancies is mixed, mostly observational, and generally reassuring when these medications are used appropriately. Untreated GERD and gastritis, however, have known risks and associations with the development of various cancers. With no evidence of an association with ADHD (or for that matter any other neuropsychiatric disorder), there is no current evidence-based reason for expectant mothers to discontinue use of acid-suppressing medications.  

February 6, 2026

The 'Medication Tolerance' Myth in ADHD: What the Evidence Actually Says

For years, a persistent concern has shadowed the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): Does the medication eventually stop working? Patients often report that their symptoms seem to return despite consistent use, leading to "dose escalation" or "medication holidays." A new systematic review from Sam Cortese’s team  published in CNS Drugs finally puts these concerns to the test by synthesizing decades of empirical research.

Before diving into the findings, you must understand two often-confused phenomena:

  • Tachyphylaxis (Acute Tolerance): A rapid decrease in response to a drug, often occurring within a single day (24 hours).
  • Tolerance: A gradual reduction in responsiveness over long-term exposure, requiring higher doses to achieve the original effect.

The review analyzed 17 studies covering over 10,000 individuals, and the results provide a much-needed reality check for the clinical community.

The researchers found preliminary evidence that acute tolerance (tachyphylaxis) can occur within a 24-hour window.

  • Subjective Effects: Studies showed that "drug liking" or feelings of euphoria from stimulants often peak and fade faster than the actual drug concentration in the blood.
  • Clinical Impact: This phenomenon is why some older, flat-release formulations were less effective than modern "ascending" delivery systems (like OROS-methylphenidate), which are designed to overcome this daily dip in efficacy.

The most important finding is that tolerance does not commonly develop to the therapeutic effects of ADHD medication in the long term. In one landmark study following children for up to 10 years, only 2.7% of participants lost their response to methylphenidate without a clear external explanation.  Doses, when adjusted for natural body growth, remained remarkably stable over years of treatment.

Consistent with the lack of therapeutic tolerance, the body does not become tolerant to the physical side effects of stimulants.  Increases in heart rate and blood pressure typically persist for as long as the medication is taken.  This underscores why clinicians must continue monitoring cardiovascular health throughout the entire duration of treatment.

If it’s Not Tolerance, What Is It?

If "tolerance" isn't real, why do some patients feel their medication is failing? The review suggests clinicians look at these alternative explanations:

  1. Natural Symptom Fluctuations: ADHD is not a static condition; symptoms naturally wax and wane over time regardless of treatment.
  2. Limited Compliance: Missed doses or inconsistent timing are often the real culprits behind "failing" efficacy.
  3. Life Events & Transitions: New jobs, academic pressures, or stressful life changes can increase the "functional demand" on a patient, making their current dose feel insufficient.
  4. Co-occurring Conditions: The emergence of anxiety, depression, or substance use disorders can mask or mimic a return of ADHD symptoms.

Why This Matters

These results provide clinicians the confidence to tell patients that their medication is unlikely to "wear out" permanently. Rather than immediately increasing a dose when symptoms flare, the first step should be a "clinical deep dive" into the patient's lifestyle, stress levels, and adherence.

For researchers, the review highlights a major gap: most existing studies are small, dated, or of low quality. There is a dire need for robust, longitudinal studies that track both the brain's response and the patient's environment over several years.

For people with ADHD, while your body might get "used to" the initial "buzz" of a stimulant within hours, its ability to help you focus and manage your life remains remarkably durable over the years.