July 25, 2024

Meta-analysis Associates Dasotraline with Some Reduction in ADHD Symptoms

Dasotraline is a serotonin-norepinephrine-dopamine reuptake inhibitor (SNDRI) that had been under development by Sunovion for treating ADHD and binge eating disorder.  

An Indian research team conducted a systematic search of the peer-reviewed medical literature to perform meta-analyses of the quantitative outcomes of clinical trials. 

Meta-analysis of five double-blinded randomized clinical trials (RCTs) with a combined total of 1,498 participants reported a small-to-medium effect size reduction in ADHD symptoms in patients given dasotraline as opposed to those given placebo. 

There were, however, strong indications of publication bias. Using the trim-and-fill procedure to correct for that bias yielded a small effect size reduction in ADHD symptoms in patients given dasotraline compared with those given placebo. 

Insomnia were more than four times more frequent among patients given dasotraline than among those given placebo. There was no evidence of the frequency of insomnia being dose-dependent. 

Similarly, patients given dasotraline were more than four times more likely to report decreased appetite than those receiving placebo. In this case, however, the effect was clearly dose-dependent, rising from 3x for 2mg to 4x for 4mg to 5x for 6mg and almost 8x for 8mg. 

The authors concluded, “dasotraline can reduce the core symptoms of ADHD, that is, hyperactivity/impulsivity and inattentiveness, leading to an overall improvement of ADHD compared to placebo. Dasotraline can also improve clinician-determined patients’ global functioning compared to the placebo. The most common adverse drug reactions related to dasotraline were insomnia and decreased appetite. However, to fill the knowledge gap, multicentric randomized active-controlled clinical trials are warranted in this domain for a successful translation into clinical practice.” 

Weighing these less than impressive initial results against the cost of further RCTs, Sunovion withdrew its application for approval by the Food and Drug Administration, stating, “while Sunovion considers dasotraline to be a promising, novel treatment for binge eating disorder and ADHD, we believe that further clinical studies would be needed to support a regulatory approval for dasotraline in these indications.” 

Rituparna Maiti, Archana Mishra, Monalisa Jena, Shampa Maji, Milan Padhan, Biswa R. Mishra, “Efficacy and safety of dasotraline in attention‐deficit hyperactivity disorder: A systematic review and meta‐analysis,” Indian Journal of Psychiatry (2024), https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_3_24

Brian Park, “Dasotraline Development for ADHD, Binge Eating Disorder Halted, NDAs Withdrawn,” Medica Professionals Reference, May 14, 2020, https://www.empr.com/home/news/drugs-in-the-pipeline/sunovion-withdraws-nda-dasotraline-development-binge-eating-adhd/.  

Related posts

Nationwide population study suggests ADHD medication may reduce child abuse

Nationwide Population Study Suggests ADHD Medication May Reduce Child Abuse

Child abuse includes any of the following inflicted on a minor under 18 years old: physical or emotional harm, sexual abuse, or neglect.

It is known to be associated with environmental factors such as poverty, parents or neighbors with a history of violence, and gender inequality.

Chronic mental disorders in minors are also associated with child abuse. To what extent, if any, might that be true of ADHD?

Taiwan has a single-payer national health insurance system that covers more than 99.6% of all residents, enabling nationwide population studies.

A local research team used data from almost two million Taiwanese in their country’s National Health Insurance Research Database (NHIRD) spanning 15 years (2000-2015) to carry out a matched-cohort study. 

All diagnoses of ADHD were made by board-certified specialists such as psychiatrists, pediatricians, neurologists, or physiatrists with a specialty in child and adolescent development.

3,540 children and adolescents between 6 and 18 years old with a diagnosis of ADHD were matched on a one-to-three basis with 10,620 peers from the NHIRD without an ADHD diagnosis.

The team adjusted for age, gender, location of residence (Northern, Central, Southern, and Eastern Taiwan), urbanization level of residence, level of hospitals as medical centers, and monthly insured premium. They further adjusted for comorbid conditions: intellectual disability, autistic disorder/pervasive developmental disorder, conduct disorder (CD)/oppositional defiant disorder (ODD), other developmental disorders, childhood emotional disorder, Tourette syndrome/tics disorders, and involuntary urination and defecation.

Overall, children and adolescents with an ADHD diagnosis were 1.8 times as likely to be abused as those without an ADHD diagnosis.

Unmedicated children and adolescents with an ADHD diagnosis were three times more likely to be abused. ADHD medication cut that risk in half.

That held true whether the medication used was methylphenidate or atomoxetine. Methylphenidate appeared to be slightly more effective than atomoxetine, and the combination of methylphenidate and atomoxetine slightly more effective yet, but these differences were not statistically significant.

The team concluded, “The results support that pharmacotherapy may attenuate the risk of child abuse in ADHD patients.”

March 5, 2024

ADHD medication and risk of suicide

ADHD Medication and Risk of Suicide

A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.

The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.

The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.

The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.

A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."

The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."

December 13, 2021

Liquid Medication Options for ADHD Adults with Autism Spectrum Disorder

Long-Acting Liquid Methylphenidate for Treating ADHD in Intellectually Capable Adults with Autism Spectrum Disorder

A team from Harvard Medical School and Massachusetts General Hospital conducted a six-week open-label trial of liquid-formulation extended-release methylphenidate (MPH-ER) to treat ADHD in adults with high-functioning autism spectrum disorder (HF-ASD). ASD is a lifelong disorder with deficits in social communication and interaction and restricted, repetitive behaviors. Roughly half of those diagnosed with ASD also are diagnosed with ADHD.

This was the first stimulant trial in adults with both ASD and ADHD. There were twelve males and three female participants, all with moderate to severe ADHD, and in their twenties, with IQ scores of at least 85.

The use of a liquid formulation enabled doses to be raised very gradually, starting with a daily dose of 5 mg(1mL) and titrating up to 60 mg over the first three weeks, then maintaining that level through the sixth week. Participants were reevaluated for ADHD symptoms every week during the six-week trial. The severity of ASD was assessed at the start, midpoint, and conclusion of the trial, as were other psychiatric symptoms.

Before the trial, researchers agreed on a combination of targets on two clinician-rated scoring systems that would have to be reached for treatment to be considered successful. One is a score of 2 or less on the CGI-S, a measure of illness severity, with scores ranging from 1 (normal, not at all ill) to 7 (most extremely ill). The other is a reduction of at least 30 percent in the AIS RS score, which combines each of 18 symptoms of ADHD on a severity grid (0=not present; 3=severe; overall minimum score: 0; overall maximum score: 54).

After the trial, twelve of the fifteen patients (80 percent) met the preset conditions for success. Fully fourteen (93 percent) saw a ≥ 30 percent reduction in their AISRS score, while twelve scored ≤ 2 on illness severity.

However, when using the patient-rated ASRS scoring system, only five (33 percent) saw a ≥ 30 percent reduction in ADHD severity.

Thirteen participants (87percent) reported at least one adverse event, and nine (60 percent) reported two or more. One reported a serious adverse event (attempted suicide) in a patient with multiple prior attempts. Because the attempt was not deemed due to medication, they continued and completed the trial. Seven participants experienced titration-limiting adverse events (headaches, palpitations, jaw pain, and insomnia). Headache was most frequent (53%), followed by insomnia and anxiety(33% each), and decreased appetite (27%).

During the trial, weight significantly decreased, while pulse significantly increased. There were no significant differences in other vital and cardiovascular measurements.

The authors concluded, "this OLT of short-term MPH-ER therapy documents that acute treatment with MPH-ER in young adults with ASD was associated with significant improvement in ADHD symptoms, mirroring the typically-expected magnitude of response observed in adults with only ADHD. Treatment with MPH-ER was well-tolerated, though associated with a higher than expected frequency of adverse events."

They also cautioned, "The results of this study need to be considered in light of some methodological limitations. This was an open-label study; therefore, assessments were not blind to treatment. We did not employ a placebo control group and, therefore, cannot separate the effects of treatment from time or placebo effects. ... firmer conclusions regarding the safety and efficacy of MPH-ER for the treatment of ADHD in HF-ASD populations await results from larger, randomized, placebo-controlled clinical trials."

August 7, 2021

Patient-Centered Outcomes Research Institute (PCORI) to Fund Landmark ADHD Medication Study

Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.

This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the  “stimulant-first” approach, which is currently used by most prescribers.

From this study, we hope to learn:

  • Is starting with a non-stimulant medication “good enough” compared with starting with a stimulant?
    In other words, when we look at overall improvement in a child’s daily life, not just ADHD symptoms, does a non-stimulant-first approach perform similarly to a stimulant-first approach?
  • Which children do better with which approach?
    Children with ADHD are very different from one another. Some have anxiety, depression, learning problems, or autism spectrum conditions. We want to know whether certain groups of children benefit more from starting with stimulants, and others from starting with non-stimulants.
  • How do the two strategies compare for side effects, treatment satisfaction, and staying on medication?
    We will compare how often children stop or switch medications because of side effects or lack of benefit, and how satisfied children, parents, and clinicians are with care under each strategy.
  • What are the longer-term outcomes over a year?
    We are interested not only in short-term symptom relief, but also in how children are doing months later in school, at home, with friends, and emotionally.

Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”

Who will be in the study?

We will enroll about 1,000 children and adolescents, ages 6 to 16, who:

  • Have ADHD and are starting or restarting medication treatment, and
  • Are being treated in everyday pediatric and mental health clinics at large children’s hospitals and health systems across the United States.

We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.

How will the treatments be assigned?

This is a randomized comparative effectiveness trial, which means:

  • Each child will be randomly assigned (like flipping a coin) to one of two strategies:


    1. Stimulant-first strategy – the clinician starts treatment with a stimulant medication.
    2. Non-stimulant-first strategy – the clinician starts treatment with a non-stimulant medication.
  • Within the assigned class, the clinician and family still choose the specific medicine and dose, and can adjust treatment as they normally would. This keeps the study as close as possible to real-world practice.
  • The randomization is 1:1, so about half the participants will start with stimulants and half with non-stimulants.

Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.

What will participants be asked to do?

Each family will be followed for 12 months. We will collect information at:

  • Baseline (before or just as medication is started)
  • Early follow-up (about weeks 3 and 6)
  • Later follow-up (about 3 months, 6 months, and 12 months)

At these times:

  • Parents will complete questionnaires about ADHD symptoms, behavior, emotions, and daily functioning at home and in the community.
  • Teachers will complete brief forms about the child’s behavior and performance at school.
  • Children and teens (when old enough) will complete age-appropriate questionnaires about their own mood, behavior, and quality of life.
  • A specially trained clinical rater, using all available information but blinded to treatment strategy, will give a global rating of how much the child has improved overall, not just in ADHD symptoms.

We will also track:

  • Medication changes (stopping, switching, or adding medicines)
  • Reasons for any changes (side effects, lack of benefit, or other reasons)
  • Any serious side effects or safety concerns

Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.

How will we analyze the results?

Using standard statistical methods, we will:

  • Compare the overall improvement of children in the stimulant-first group versus the non-stimulant-first group after 12 months.
  • Look at differences in side effects, discontinuation rates, and treatment satisfaction between the two strategies.
  • Examine which child characteristics (such as age, sex, co-occurring conditions, and baseline severity) are linked to better results with one strategy versus the other.
  • Analyze long-term outcomes, including functioning at home, school, and with peers, and emotional well-being.

All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?

Why is this study necessary now?

This study addresses a critical, timely gap in ADHD care:

  • Guidelines are ahead of the evidence.
    Existing guidelines almost always recommend stimulants as the first-line medication, yet careful reviews of the evidence show that direct comparisons of stimulant-first versus non-stimulant-first strategies are limited. We do not have strong data to say that starting with stimulants is clearly superior for all children.
  • Real-world children are more complex than those in past trials.
    Most prior medication trials have excluded children with multiple conditions, serious family stressors, or other complexities that are very common in everyday practice. Our pragmatic, multi-site design will include these children and thus produce findings that are directly relevant to front-line clinicians and families.
  • Families and clinicians are asking for alternatives.
    Parents often express worries about stimulant side effects, long-term use, and stigma. Clinicians would like clearer guidance about when a non-stimulant is a reasonable first choice. At the same time, stimulant shortages and concerns about misuse and diversion have exposed the risks of relying almost entirely on one class of medications.
  • The timing is right to influence practice and policy.
    Our team includes parents, youth advocates, frontline clinicians, and national networks that link major children’s hospitals. These partners have helped shape the study from the beginning and will help interpret and share the results. This means that if starting with non-stimulants is found to be similarly effective and safer or more acceptable for some children, practice patterns and guidelines can change rapidly.

In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.

This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY).   It will be conducted at nine sites across the USA.

January 2, 2026

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.” 

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

December 15, 2025