Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
August 12, 2024

Quality of life (QoL) is defined as a person’s satisfaction with their life, measured across several dimensions including psychological, social, health, biological, and economic well-being. For adults, these are usually self-reported. QoL for children and adolescents is usually reported by parents.
Medications for ADHD include stimulants (methylphenidate and amphetamines) and non-stimulants (e.g., atomoxetine, clonidine, guanfacine, viloxazine). As QoL is related to ADHD symptoms’ severity, management of ADHD via medication could improve not only core symptoms but also QoL in people with ADHD.
Noting the absence of meta-analytic evidence on the effects of ADHD medications on QoL, an international research team conducted a systematic review and meta-analysis of parallel or cross-over randomized clinical trials (RCTs) to estimate the effects of ADHD medication on QoL. They also performed secondary analyses to see if these effects differed in children and adolescents versus adults, as well as by class of medications, and if they were moderated by length of treatment.
Meta-analyses of four RCTs with a combined total of 950 participants with ADHD (45% adults) found a medium effect size improvement among those receiving amphetamines by comparison with those receiving placebo. There was no sign of publication bias, but there was wide variation (heterogeneity) in effect size estimated among the studies.
Meta-analysis of four RCTs with a combined total of 1,094 participants with ADHD (57% adults) found a small-to-medium effect size improvement among those receiving methylphenidate by comparison with those receiving placebo. Again, there was no sign of publication bias, but wide variation in effect sizes among the studies.
Due to lack of sufficient data, the team could not explore whether length of treatment affected the results, or if there were differences between children/adolescents and adults.
Finally, a meta-analysis of eleven RCTs with a combined total of 3,344 participants with ADHD (63% adults) likewise found a small effect size improvement among those taking atomoxetine compared with those receiving placebo. Once again, there was no sign of publication bias, but wide variation in effect sizes among the studies.
The team was able to establish that for atomoxetine treatment, length of intervention – the studies ranged from 6 to 24 weeks – had no significant moderating effect. Similarly, they found no significant differences in effect on children and adolescents versus adults.
A single RCT evaluating modafinil treatment in adults found no improvements at any dose, whereas a single RCT testing non-stimulant guanfacine reported a medium effect size improvement in QoL. Modafinil is not FDA approved for ADHD but is sometimes used as a last resort if other treatments fail.
The team concluded that the FDA approved medications for ADHD were significantly more efficacious than placebo in improving QoL in people with ADHD. The improvements in Q0L were, however, smaller than what has been found for improvements is the symptoms of ADHD (inattention, hyperactivity, impulsivity). More work is needed to detect differences by age and length of treatment.
Alessio Bellato, Nadia J. Perrott, Lucia Marzulli, Valeria Parlatini, David Coghill, and Samuele Cortese, “Systematic Review and Meta-Analysis: Effects of Pharmacological Treatment for Attention-Deficit/Hyperactivity Disorder on Quality of Life,” Journal of the American Academy of Child & Adolescent Psychiatry (2024), https://doi.org/10.1016/j.jaac.2024.05.023.
A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.
The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.
The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.
Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.
The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.
Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.
A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."
The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."
Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.
On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.
So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.
The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.
Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.
Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.
Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.
Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.
The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."
Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"
The stimulants methylphenidate and amphetamine are well known for their efficacy in treating symptoms of ADHD in both youth and adults. Although these medications have been used for several decades, relatively little is known about the mechanisms of action that lead to their therapeutic effect.
New data about the mechanism comes from a meta-analysis by Katya Rubia and colleagues. They analyzed 14 functional magnetic resonance imaging (fMRI) data sets comprising 212 youth with ADHD. Each of these data sets assessed the short-term effects of stimulants on fMRI-assessed brain activations. In the fMRI paradigm, ADHD and control participants are asked to do a neurocognitive task while the activity of their brains is being measured. Dr. Rubia and colleagues analyzed data from fMRI assessments of time discrimination, inhibition, and working memory, each of which is known to be deficient in ADHD patients.
The meta-analysis found that the most consistent brain activations were seen in a region comprising the right inferior frontal cortex(IFC) and insula, even when the analysis was limited to previously medication-naïve patients. The implicated region of the brain is known to mediate cognitive control, time estimation, and attention. Dr.Rubia also notes that other studies show that the IFC/Insula is needed for updating information and allocating attention to relevant stimuli.
Another region implicate by the meta-analysis was the right putamen, a region that is rich in dopamine transporters. This finding is consistent with the fact that the dopamine transporter is the main target of stimulant medications.
What is the potential clinical implication of these findings? As Dr. Rubia and colleagues note, it is possible that the fMRI anomalies they identified could be used as a biomarker for ADHD or a biomarker to select patients who should respond optimally to stimulant medication. Although fMRI cannot be used as a clinical tool at this time, research of this sort is opening up new horizons for how we understand the etiology of ADHD and the mechanisms whereby medications exert their effects.
Stimulant medications have long been considered the default first-line treatment for attention-deficit/hyperactivity disorder (ADHD). Clinical guidelines, prescribing practices, and public narratives all reinforce the idea that stimulants should be tried first, with non-stimulants reserved for cases where stimulants fail or are poorly tolerated.
I recently partnered with leading ADHD researcher Jeffrey Newcorn for a Nature Mental Health commentary on the subject. We argue that this hierarchy deserves reexamination. It is important to note that our position is not anti-stimulant. Rather, we call into question whether the evidence truly supports treating non-stimulants as secondary options, and we propose that both classes should be considered equal first-line treatments.
Stimulants have earned their reputation as the go-to drug of choice for ADHD. They are among the most effective medications in psychiatry, reliably reducing core ADHD symptoms and improving daily functioning when properly titrated and monitored. However, when stimulant and non-stimulant medications are compared more closely, the gap between them appears smaller than commonly assumed.
Meta-analyses often report slightly higher average response rates for stimulants, but head-to-head trials where patients are directly randomized to one medication versus another frequently find no statistically significant differences in symptom improvement or tolerability. Network meta-analyses similarly show that while some stimulant formulations have modest advantages, these differences are small and inconsistent, particularly in adults.
When translated into clinical terms, the advantage of stimulants becomes even more modest. Based on existing data, approximately eight patients would need to be treated with a stimulant rather than a non-stimulant for one additional person to experience a meaningful benefit. This corresponds to only a 56% probability that a given patient will respond better to a stimulant than to a non-stimulant. This difference is not what we would refer to as “clinically significant.”
One reason non-stimulants may appear less effective is the way efficacy is typically reported. Most comparisons rely on standardized mean differences, a method of averages that may mask heterogeneity of treatment effects. In reality, ADHD medications do not work uniformly across patients.
For example, evidence suggests that response to some non-stimulants, such as atomoxetine, is bimodal: this means that many patients respond extremely well, while others respond poorly, with few in between. When this happens, average effect sizes can obscure the fact that a substantial subgroup benefits just as much as they would from a stimulant. In other words, non-stimulants are not necessarily less effective across the board, but that they are simply different in who they help.
In our commentary, we also highlight structural issues in ADHD research. Stimulant trials are particularly vulnerable to unblinding, as their immediate and observable physiological effects can reveal treatment assignment, potentially inflating perceived efficacy. Non-stimulants, with slower onset and subtler effects, are less prone to this bias.
Additionally, many randomized trials exclude patients with common psychiatric comorbidities such as anxiety, depression, or substance-use disorders. Using co-diagnoses as exclusion criteria for clinical trials on ADHD medications is nonviable when considering the large number of ADHD patients who also have other diagnoses. Real-world data suggest that a large proportion of individuals with ADHD would not qualify for typical trials, limiting how well results generalize to everyday clinical practice.
Standard evaluations of medication tolerability focus on side effects experienced by patients, but this narrow lens misses broader societal consequences. Stimulants are Schedule II controlled substances, which introduces logistical barriers, regulatory burdens, supply vulnerabilities, and administrative strain for both patients and clinicians.
When used as directed, stimulant medications do not increase risk of substance-use disorders (and, in fact, tend to reduce these rates); however, as ADHD awareness has spread and stimulants are more widely prescribed, non-medical use of prescription stimulants has become more widespread, particularly among adolescents and young adults. Non-stimulants do not carry these risks.
Non-stimulants are not without drawbacks themselves, however. They typically take longer to work and have higher non-response rates, making them less suitable in situations where rapid results are essential. These limitations, however, do not justify relegating them to second-line status across the board.
This is a call for abandoning a one-size-fits-all approach. Instead, future guidelines should present stimulant and non-stimulant medications as equally valid starting points, clearly outlining trade-offs related to onset, efficacy, misuse risk, and practical burden.
The evidence already supports this shift. The remaining challenge is aligning clinical practice and policy with what the data, and patient-centered care, are increasingly telling us.
Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.
This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the “stimulant-first” approach, which is currently used by most prescribers.
From this study, we hope to learn:
Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”
Who will be in the study?
We will enroll about 1,000 children and adolescents, ages 6 to 16, who:
We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.
How will the treatments be assigned?
This is a randomized comparative effectiveness trial, which means:
Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.
What will participants be asked to do?
Each family will be followed for 12 months. We will collect information at:
At these times:
We will also track:
Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.
How will we analyze the results?
Using standard statistical methods, we will:
All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?
Why is this study necessary now?
This study addresses a critical, timely gap in ADHD care:
In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.
This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY). It will be conducted at nine sites across the USA.
EBI-ADHD:
If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other. The EBI-ADHD website fixes that.
EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions. These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options.
The heart of the site is an interactive dashboard. You can:
The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance:
Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided.
EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system.
The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.
Why it Matters
ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it.
In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info